KONFERENZ: KLIMASCHUTZ = DENKMALSCHUTZ?

Les conseils de ma grand-mère

Mardi 8 juillet 2025

Dr.-Ingénieur Julien CARTON

Introduction

Qui suis-je?

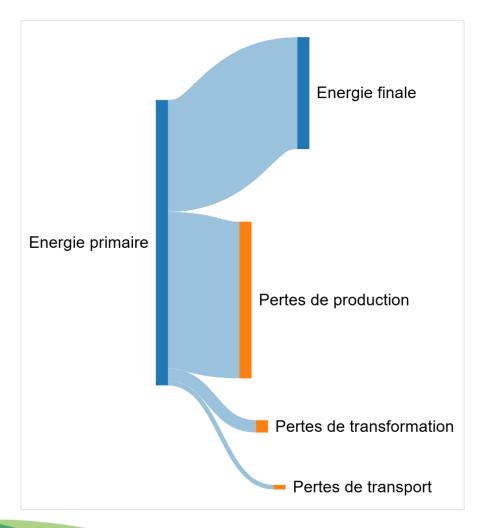
- Julien CARTON, Dr.-Ingénieur en efficacité énergétique et formateur
- Expériences professionnelles
 - Recherche: Université de Luxembourg (PhD), Université de Liège (Belgique)
 - Audit énergétique et formations : ICSEED (France), energieagence (Luxembourg)
 - Depuis novembre 2024 : ICSEED formations à Pompey (54 France)

Objet de cette présentation

- Un exemple d'approche méthodologique de l'efficacité énergétique dans le bâtiment
- Des éléments de compréhension adaptés au bâti ancien
- Retour d'expériences réels et chiffrés d'optimisation de bâtiments (ancien et moderne) dans le **Grand Est** et le **Grand-Duché de Luxembourg**

Conceptualisation de l'efficacité énergétique dans le bâtiment

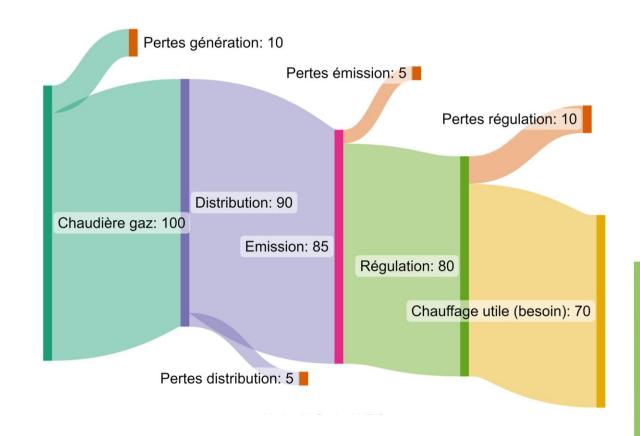
Compréhension et maîtrise des flux



Conceptualisation de l'efficacité énergétique dans le bâtiment

De l'énergie primaire à l'énergie utile

- **Energie primaire = ressources fossiles et renouvelables** nécessaires avant transformation/transport
- **Energie finale = facture**
 - Consommation d'énergie (gaz, fuel, électricité, bois, chaleur) nécessaire à générer l'énergie utile
- **Energie utile = besoins**
 - Par exemple en chauffage : quantité d'énergie nécessaire à atteindre les conditions souhaitées à l'intérieur du bâtiment


Conceptualisation de l'efficacité énergétique dans le bâtiment

De l'énergie finale à l'énergie utile

- Les systèmes CVC assurent :
 - Production
 - Distribution
 - Emission
 - Régulation

Les systèmes représentent 10 à 30% des consommations d'énergie finale!

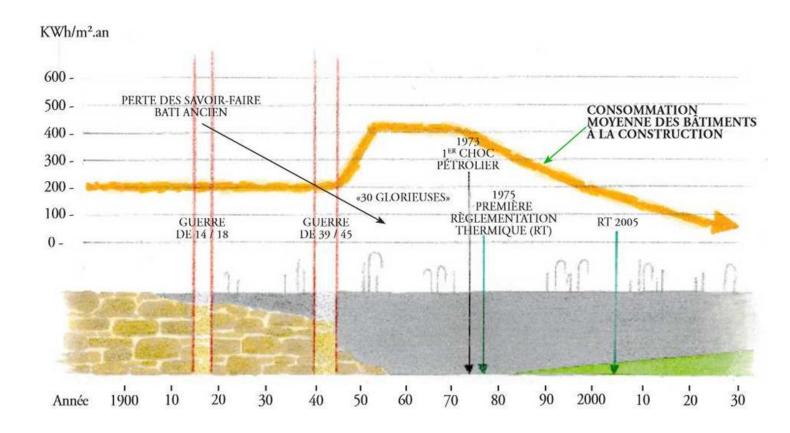
Conceptualisation de l'efficacité énergétique dans le bâtiment

Sobriété, efficacité, de quoi parle-t-on?

- Nécessité de revenir à l'essentiel : le concept de besoins
 - Sobriété : rationalisation des besoins
 - Efficacité : optimisation des systèmes CVC
- Il convient de prêter attention à <u>la réalité des usages</u>
 - Peu importe le soin apporté à la conception, la réalité c'est... un bâtiment VIVANT
- Les constatations sur le terrain indiquent souvent, par exemple
 - Des surdimensionnements importants qui impactent l'efficacité des systèmes
 - Des nécessaires réajustements à l'usage
 - Des innovations qui ne fonctionnent pas, ou peu, sans que l'on s'en aperçoive

Cas du bâti ancien ... en 2 mots ou presque

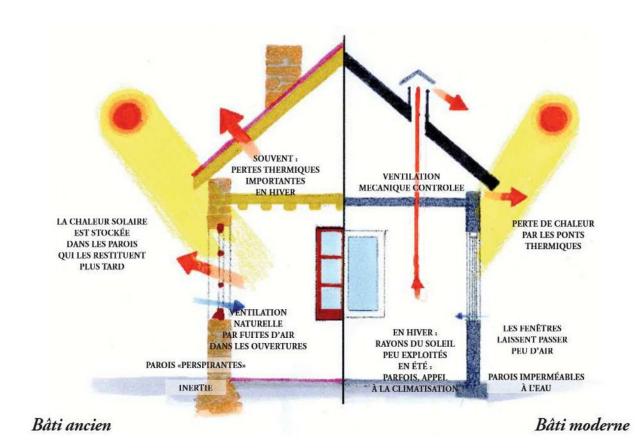
Thermique d'été et d'hiver Approche hygrothermique



Du bâti ancien au bâti moderne

- Le bâti ancien
 - Un bâti intégré à l'environnement
 - Avec des matériaux :
 - Naturels
 - Peu transformés

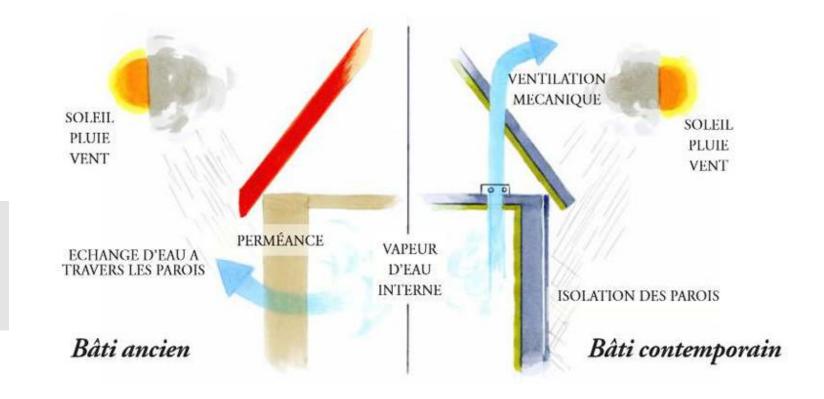
Le bâti ancien respire et sait gérer l'humidité



Du bâti ancien au bâti moderne

- Le bâti ancien
 - Un bâti intégré à l'environnement
 - Avec des matériaux :
 - Naturels
 - Peu transformés

Le bâti ancien respire et sait gérer l'humidité



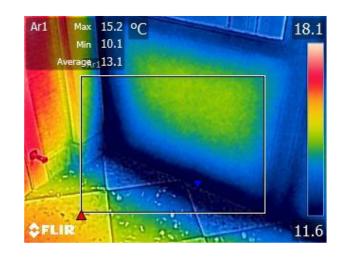
Du bâti ancien au bâti moderne

- Le bâti ancien
 - Un bâti intégré à l'environnement
 - Avec des matériaux :
 - Naturels
 - Peu transformés

Le bâti ancien respire et sait gérer l'humidité

Sobriété, efficacité, oui mais comment?

Une règle FONDAMENTALE:

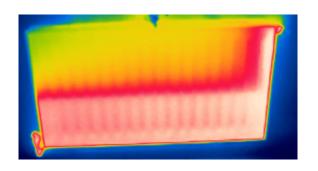

préserver les propriétés hygrothermiques du bâti

- Ne pas dénaturer, ne pas dégrader
- Laisser les murs respirer et la vapeur d'eau migrer

La sobriété : réduire le besoin

- Performance de l'enveloppe
 - Isolation par l'intérieur, enduits intérieurs respirants (matériaux naturels)
 - Améliorer le rayonnement de paroi froide mais préserver l'inertie
- Parois vitrées : gérer la question patrimoniale
 - Création de double-fenêtres par exemple
 - Préserver un taux de renouvellement d'air suffisant (traiter la ventilation systématiquement)
- Ventilation : puits canadiens, locaux annexes, mise en œuvre d'une ventilation mécanique...
- Gestion de l'intermittence (surtout dans le cas de chauffage convectif)

La sobriété : réduire le besoin


- Confort d'été : limiter ou prohiber le recours à la climatisation
 - Intégration dans l'environnement (ombrage)
 - Protections solaires sur les ouvertures
 - Profiter de l'inertie (surventilation nocturne)

Efficacité des systèmes

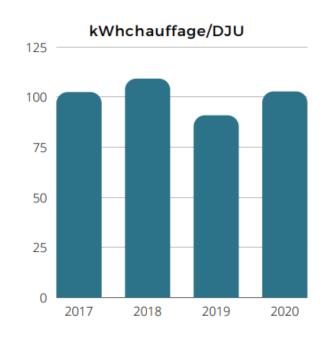
- Vérifier le fonctionnement de l'installation dans l'état de l'art: équilibrage, désembouage
- Réhabilitation lourde :
 - Privilégier l'émission de chaleur par rayonnement
 - Travailler à basse température
- Optimisation de la chaine de valeur
 - Remplacement des générateurs/émetteurs
 - Isolation des conduites
 - Dans le cas de systèmes convectifs : travailler l'intermittence au maximum
 - Optimisation de la régulation (courbes de chauffe, régulation terminale)...

Approche méthodologique

Approche normative Structuration de flux

Approche méthodologique Structurer l'analyse des flux

La priorité numéro 1 : connaître et comprendre sa consommation


- Etablir une situation de référence est requis pour toute stratégie pertinente d'optimisation
- Tout le monde dispose déjà de données pour une analyse préliminaire de qualité
 - Compteurs généraux (électricité, gaz, fuel, chaleur...)
 - Factures & courbe de charge
 - Des relevés éventuels
- Données qui vont permettre d'établir
 - Des indicateurs de performance énergétique
 - La consommation tous vecteurs énergétiques du/des site(s), en MWh et en euros
 - La distribution de la consommation totale du patrimoine

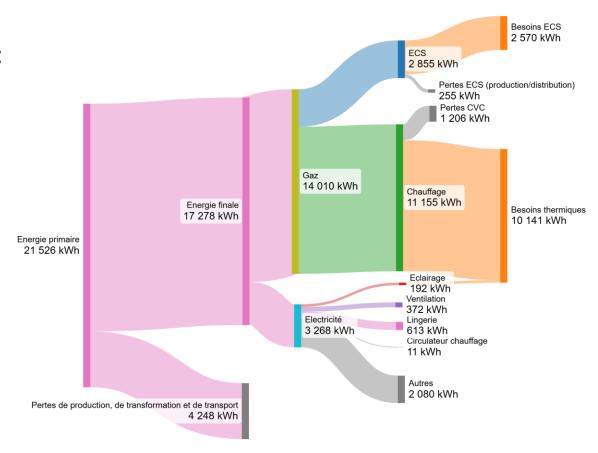
Approche méthodologique Structurer l'analyse des flux

La priorité numéro 1 : connaître et comprendre sa consommation

- Exemples d'indicateurs de performance énergétique
 - kWh_{élec}/(m².an)
 - kWh_{chauffage}/DJU
 - kWh_{énergie finale}/ (m².an)
 - kWh/usager
 - € énergie/MWh

= Degrés-Jours Unifiés.

Ce facteur correspond à l'écart cumulé entre la température extérieure et une température intérieure de référence.


Il permet de quantifier la rigueur climatique d'une période à une autre.

Ainsi, rationaliser une consommation de chauffage annuelle sur les DJU, permet d'approcher la notion de performance énergétique de chauffage, et de comparer une année à l'autre par exemple.

Approche méthodologique Structurer l'analyse des flux

- Les principaux flux d'énergie sont majoritairement identiques dans le bâtiment
- ETAPE 1 : analyse préliminaire & qualitative
 - Structurer une analyse mono ou multibâtiments
 - Qualifier les flux d'énergie
 - Etablir des premières pistes pour une trajectoire de décarbonation
- ETAPE 2 : si nécessaire quantification
 - Mesure d'impact environnemental, énergétique et financier
 - Priorisation d'actions et planification pluriannuelle

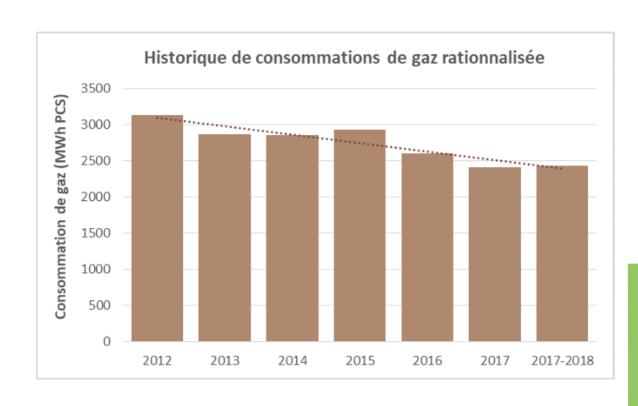
Approche méthodologique Structurer l'analyse des flux

Approfondir sa compréhension du comportement du bâtiment

- Mettre la théorie en perspective, avec son nez, ses yeux, ses oreilles
- Mais aussi grâce à la mesure sur site, avec un monitoring actif, ou des mesures ponctuelles
 - Ambiance (température, humidité, CO₂)
 - Débits (hydrauliques, aérauliques)
 - Courant, puissance électrique absorbés

Retour d'expérience en Grand Est

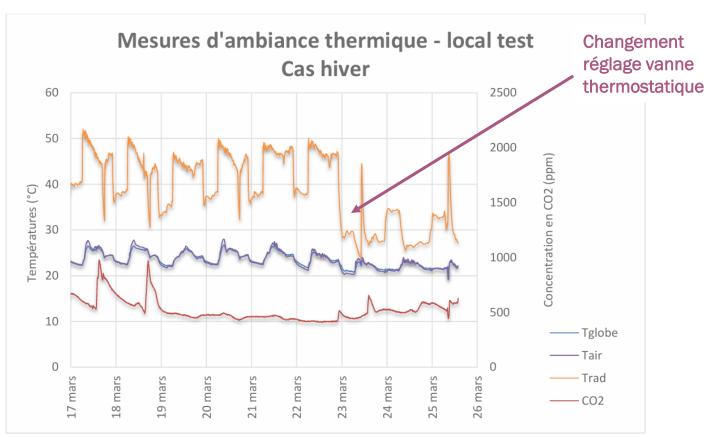
Cas d'un bâtiment tertiaire Cas d'un patrimoine communal



Retour d'expérience en Grand Est Exemple tertiaire

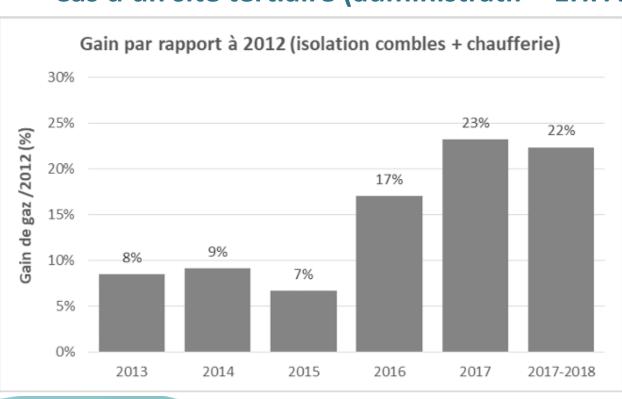
Cas d'un site tertiaire (administratif + EHPAD) de 11 097 m² situé à Nancy (54)

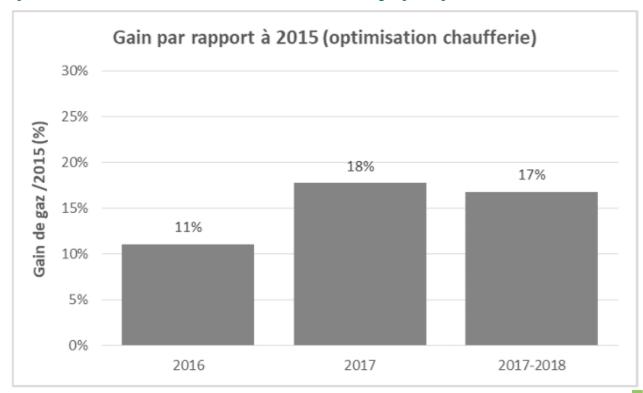

- Construction: 1920
 - Majoritairement non isolé
 - Double vitrage
- Audit énergétique réalisé en 2015
- Actions entreprises
 - 2012 : isolation des combles
 - 2015 : optimisation des systèmes
 - Programmation horaire des CTA
 - Calorifuge échangeur ECS
 - Optimisation courbe de chauffe distribution
 - Optimisation de la cascade de chaudières



Retour d'expérience en Grand Est Exemple tertiaire

Cas d'un site tertiaire (administratif + EHPAD) de 11 097 m² situé à Nancy (54)





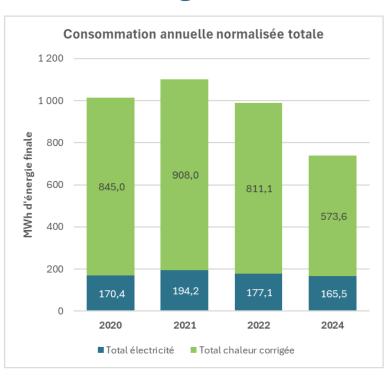
Retour d'expérience en Grand Est **Exemple tertiaire**

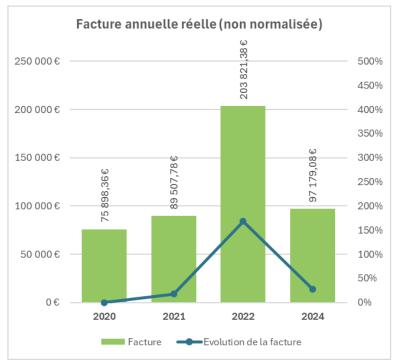
Cas d'un site tertiaire (administratif + EHPAD) de 11 097 m² situé à Nancy (54)

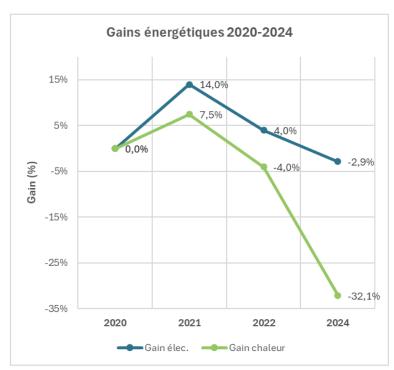
23

Retour d'expérience en Grand Est Exemple d'un patrimoine communal

Cas d'un village de 4 500 habitants avec une dizaine de bâtiments communaux (54)


- Stratégie court terme
 - Urgences de maintenance + gains faciles
 - 2021-2023 : remplacement de trois chaufferies par des chaufferies gaz condensation (écoles + salle des fêtes)
 - 2023 : optimisation de la régulation terminale
- Stratégie moyen/long terme
 - Audits énergétiques des deux sites > 1 000 m²
 - Travail sur l'enveloppe et ventilation
 - Chaufferie biomasse ou PAC (air-eau, air-sol)
 - Installations PV




Retour d'expérience en Grand Est Exemple d'un patrimoine communal

Cas d'un village de 4 500 habitants avec une dizaine de bâtiments communaux (54)

25

Retour d'expérience au Grand-Duché de Luxembourg

Opération Zesumme spueren - Zesummenhalen

Exemple de la contribution du secteur public : méthodologie proposée par energieagence et Global facilities au gouvernement du Grand-Duché

- Contexte : effort européen conjoint pour réduire la consommation de gaz afin d'assurer la sécurité d'approvisionnement pour l'hiver 2022/2023 et au-delà
- Sensibilisation / formation des responsables techniques du parc immobilier (automne 2022)
- Audit énergétique simplifié
 - Visite des installations techniques principales, organes de régulation
 - Analyse de factures & de courbes de charges
 - Recommandations à court temps de retour sur investissement
- Visite / échange complémentaire pour valider la mise en œuvre des recommandations
- Evaluation de l'impact

energieagence

Résultats – exemples pour trois cas concrets

energieagence

Résultats – exemples pour trois cas concrets

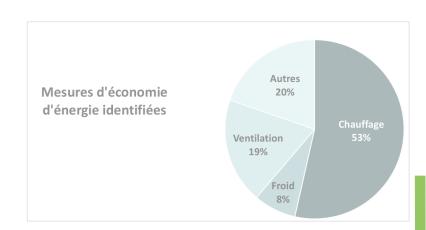
Réduction réalisée de la consommation d'énergie finale

Chaleur	- 30 %	- 24 %	- 44 %
Électricité	- 4%	- 3%	- 10 %

Comparaison de la consommation d'énergie sur la période hivernale hiver 2021/2022 comparé à l'hiver 2022/2023 (pour les mois de septembre à mars)

-22%

FORMATIONS


Résultats – exemples pour trois cas concrets

Energie finale économisée (chaleur + froid + électricité) sur l'hiver 2022/2023 par rapport à l'hiver 2021/2022 (%)

Héichhaus -20%

Lycée Ermesinde -15%

Lycée Bel-Val -32%

julien@icseed-formations.com

www.icseed-formations.com

